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THERMOELASTOPLASTIC DEFORMATION

OF A THICK-WALLED CYLINDER WITH A RADIAL CRACK

UDC 539.375I. M. Lavit and Nguyen Viet Trung

The thermoelastoplastic fracture mechanics problem of a thick-walled cylinder subjected to internal
pressure and a nonuniform temperature field is solved by the method of elastic solutions combined
with the finite-element method. The correctness of the solution is provided by using the Barenblatt
crack model, in which the stress and strain fields are regular. The elastoplastic problem of a cracked
cylinder subjected to internal pressure and a nonuniform temperature field are solved. The calculation
results are compared with available data.
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Introduction. In strength analysis, structural members used in power and chemical engineering can be
treated as thick-walled cylinders subjected to internal pressure and a nonuniform temperature field. Under qua-
sistatic loading, fracture of a cylinder is a results of radial crack propagation from the inner surface. The length of
the segment of steady crack growth is comparable to the thickness of the cylinder; therefore, the strength of the
cylinder should be analyzed using the fracture mechanics concepts. In addition, it is necessary to take into account
the possibility of plastic deformation.

The computational scheme of the problem is given in Fig. 1. A cylinder of inner radius R1 and outer
radius R2 is in a plane strain state. It is assumed that the material of the cylinder is homogeneous, isotropic, and
perfectly plastic and that its strain is small. In elastic deformation, the behavior of the material obeys Hooke’s law,
and in plastic deformation, it obeys the Prandtl–Reuss relations and the Mises yield condition. The yield point σY

depends on temperature. The cylinder is weakened by a radial crack of length a. The interior of the cylinder and
the crack cavity are acted upon by pressure p. The cylinder is heated nonuniformly. By virtue of the quasistatic
formulation of the problem, the temperature field can be considered axisymmetric.

The problem of elastic deformation of a cracked cylinder was first solved by Bowie and Freese [1] using the
Kolosov–Muskhelishvili method with a conformal mapping of a circular ring onto the cross section of the cracked
cylinder combined with a collocation method. Only the action of external pressure was considered. Shannon [2]
solved the problem of the action of internal pressure using a finite-element method. In this case, unlike in the case
considered in [1], pressure was also applied to the crack faces. Andrasis and Parker [3–5] improved the method
proposed in [1] and solved a linear fracture mechanics problem for a cylinder containing a varied number of identical
cracks equidistant from each and subjected to external and internal pressures, and also in the presence of a self-
balanced field of residual stresses. Pu and Hussain [6] solved the same problem using the finite-element method.
The elastoplastic deformation of cracked cylinders have also been studied. Sumpter [7] solved an elastoplastic
problem for a cylinder subjected to internal pressure using the finite-element method, and Tan and Lee [8] found
the same solution using the boundary-element method. Cheissoux [9] studied a thermoelastoplastic problem for a
cracked cylinder using the finite-element method and Zhigun [10] examined an elastoplastic problem in the presence
of residual stresses after autofregatting.

The solutions of the problems given in [7–10] have a common drawback. As is known, elastic and elastoplastic
states differ in the nature of singularities of the stress and strain fields at the crack tip [11]. Because elastoplastic
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Fig. 1. Computational scheme.

problems are solved using successive approximations, this singularity cannot be taken into account correctly (unlike
in solutions of elastic problems) using special elements to satisfy the adopted law of singularity. The standard method
for refining numerical solutions — the use of a finer mesh in the zone of maximum stresses — is suitable in this case if
the approximation of the singular field near the singular point can be further improved through the use of piecewise
analytical functions. In practice, this possibility is established empirically, by comparing numerical elastic solutions
obtained on different meshes with a reference solution found by any special method of linear fracture mechanics.
It is clear that this approach differs from the method of constructing convergent elastoplastic solutions. It might
be expected that, in solving the same problem and having good agreement between the elastic solution and the
reference, one would obtain greatly different elastoplastic solutions [12]. Therefore, in solving a thermoelastoplastic
problem for a cracked cylinder, Lavit and Tolokonnikov [13] employed a new numerical method [14], which used
the Barenblatt model instead of the Griffith crack model [15]. This model contains no singularities of the stress
and strain fields at the crack tip, which ensures the validity of the method of elastic solutions [16] — an iterative
method for the solution of the elastoplastic problem. This method, however, also has a drawback — the condition
that the length of the cohesive zone should be equal to the length of the finite element adjacent to the crack tip.
The mesh cannot be refined without decreasing the length of the cohesive zone, which, as in the previous case,
casts the correctness of the method. In the solutions given below, the singularities of the stress and strain fields are
eliminated in each iteration of the solution of the elastoplastic problem using the finite-element method developed
in [17, 18]. In this case, the sizes of the elements and the length of the cohesive zone are independent of each other.
The results are compared, where possible, with available data.

1. Formulation and Solution of the Thermoelastoplastic Problem. The thermoelastoplastic defor-
mation of material is described by the constitutive relations

εmn =
1
2

( ∂un

∂xm
+
∂um

∂xn

)
, εmn = εe

mn + εp
mn, ε =

εmm

3
,

ΔT = T − T0, σmn = 3K(ε− αΔT )δmn + 2G(εe
mn − εδmn), (1.1)

σ = σmm/3, dεp
mn = dλ(σmn − σδmn),

where xm are Cartesian coordinates, um is the displacement vector, εmn is the strain tensor, εe
mn and εp

mn are
the elastic and plastic strain tensors, respectively, T is the temperature, T0 is the initial temperature, ΔT is the
temperature increment, σmn is the stress tensor,K and G are the elastic moduli, α is the linear-expansion coefficient,
δmn is the Kronecker delta, ε and σ are the average strain and stress, respectively, and dλ is an undetermined
coefficient. For active loading, the Mises yield condition is satisfied:

(σmn − σδmn)(σmn − σδmn) = 2σ2
Y /3. (1.2)

In this case, dλ � 0 (the equality to zero corresponds to the case of neutral loading). For purely elastic deformation
and unloading, the left side of expression (1.2) is smaller than the right side, and, in this case, dλ = 0.
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The solution of the variational equation∫

S

σmn δεmn dS =
∫

l

pk δuk dl (1.3)

(S is the cross-sectional area of the cylinder, l is its boundary contour, and pk is the load vector applied to
the contour), together with the kinematic boundary conditions (in the problem in question, they are reduced to
eliminating rigid displacements of the cylinder) and relations (1.1) and (1.2) at a given temperature field, allows to
determine all parameters of stress–strain state. The problem is nonlinear, and its solution is found by the iterative
method of elastic solutions [16], which was modified for fracture mechanics problem in [19]. The stresses are written
as

σmn = tmn − 3KαΔT δmn + smn,

where the stress tensor tmn is related to the strain tensor by Hooke law and the initial stress tensor smn is propor-
tional to the plastic strain tensor:

tmn = 3Kεδmn + 2G(εmn − εδmn), smn = −2Gεp
mn. (1.4)

The variational equation (1.3) becomes∫

S

tmn δεmn dS =
∫

l

pk δuk dl +
∫

S

(3KαΔT δij − sij)δεij dS. (1.5)

For known initial stresses, Eq. (1.5) is the variational equation of the elastic problem for a cylinder subjected
to surface loads (the first term on the right side) and volume loads (the second term). The dependences of the
pressure and the temperature field on a certain monotonic loading parameter τ are assumed to be known. The
range of τ is divided into M segments, which will be called loading steps. Let the initial stresses s∗mn distributed
in the cylinder by the beginning of the next loading step be known. Due to variation in the pressure and (or) the
temperature field in the loading step considered, the initial stresses gain increments Δsmn. Assuming that these
increments are small, we can use them to approximately replace the differentials dsmn. From relations (1.4) and
(1.1), we obtain

Δsmn = −Δκ(tmn − tδmn + s∗mn), Δκ =
2GΔλ

1 + 2GΔλ
, Δκ ∈ [0; 1), t =

tmm

3
(1.6)

(the quantity dλ is replaced by Δλ). To determine Δsmn for known values of tmn and s∗mn, it is necessary to know
the value of the coefficient Δκ, which is found from condition (1.2):

Δκ = 1 − σY /
√

1.5(tmn − tδmn + s∗mn)(tmn − tδmn + s∗mn) . (1.7)

If the calculations using formula (1.7) yield Δκ < 0, then equality (1.2) is not valid, i.e., purely elastic
deformation or unloading takes place. In this case, all relations given above remain valid, but, in them, it is
necessary to set Δκ = 0. The iterative process of elastic solutions is performed as follows. As a first approximation,
the initial-stress increments Δsmn are set equal to zero. In this case, the initial stress field smn = s∗mn is obviously
known. Equation (1.5) defining the linear elasticity problem is solved. As a result, the tensor field tmn is found.
Next, formulas (1.6) and (1.7) are used to determine the initial-stress increments and then the corrected values of
the initial stresses smn = s∗mn + Δsmn, after which Eq. (1.5) is solved again, and so long until the iterative process
converges, after which the following loading step is made. We note that the condition of smallness of the increments
Δsmn, leading to the requirement Δκ � 1, is a necessary condition for the validity of the solution; therefore, the
method of elastic solutions can be considered as a correct method for the solution of elastoplastic problems only in
the case of no singularities of the stress field.

2. Solution of the Boundary-Value Elastic Problem. Thus, in each iteration of the solution of the
elastoplastic problem, it is necessary to solve the elastic problem with specified surface and volume loads. Because,
this is a linear fracture mechanics problem, it must be formulated so as to eliminate singularities of the stress
field. This is reached by taking into account cohesive forces [15] that attract the opposite crack faces to each other.
However, this is not merely a mathematical device. In the neighborhood of the crack tip, there is a narrow zone
of large plastic strains, whose propagation during crack growth is primarily responsible for the resistance to this
growth. The action of this zone on the remaining material is modeled by cohesive forces [20, 21].
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Fig. 2. Finite-element mesh.

Fig. 3. Finite element in local coordinates.

Because the problem is symmetric, it is sufficient to consider half of the cross section of the cylinder (Fig. 2).
The boundary conditions are formulated as follows. The segment of the boundary contour CD (the outer surface
of the cylinder) is free of load; on the segments DE and BC, the displacement u2 and stress σ12 are equal to
zero (symmetry conditions); the segment EA (the inner surface of the cylinder) is subjected to pressure p; the
segment AB (crack surface) is subjected to pressure p, and part of this segment adjacent to the crack tip (point B)
is acted upon by cohesive forces. The rigid displacement along the abscissas is subject to the constraint u1 = 0 at
the point B.

The elastic problem is solved by the finite-element method [22]. The typical discretization of the computa-
tional domain into elements is presented in Fig. 2. In this work, we used square isoparametric elements of the first
order (Fig. 3) [22]. The nodes of the elements have double numbering. The global Cartesian coordinates of the
points of the element are defined by the formula

xm = Li(ξ)Lj(η)X ij
m , i, j = 1, 2, ξ, η ∈ [−1; 1],

where X ij
m are the specified global Cartesian coordinates of the nodes (the superscripts denote the node number in

the local numbering) and Li(ξ) are the Lagrangian polynomials

L1(ξ) = (1 − ξ)/2, L2(ξ) = (1 + ξ)/2.

Let r and θ be polar coordinates and r be reckoned from the crack tip. As r → 0, the stress, strain, and displacements
are defined by the asymptotic formulas [11]

σmn = KIσ
∗
mn, εmn = KIε

∗
mn, um = KIu

∗
m,

where KI is the stress intensity factor (in this case, because of the symmetry of the problem, KII = 0); σ∗
mn, ε∗mn,

and u∗m are known functions of the coordinates [11]. In particular, in the case of plane deformation

u∗1 =
2(1 + ν)

E

√
r

2π
cos

θ

2

(
1 − 2ν + sin2 θ

2

)
, u∗2 =

2(1 + ν)
E

√
r

2π
cos

θ

2

(
2(1 − ν) − cos2

θ

2

)

(E is Young’s modulus and ν is Poisson’s constant).
The displacements inside any finite element are specified as

um = Li(ξ)Lj(η)U ij
m +KIu

∗
m, (2.1)

where U ij
m are nodal displacements [displacements of the nodes ignoring the contribution of the second term in

formulas (2.1)]. The stress intensity factor KI is unknown and, along with the nodal displacements, is a varied
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parameter. Specification of the displacement field in the form of (2.1) provides, first, a correct asymptotic represen-
tation of the stresses and strains with approach to the crack tip and, second, continuity of the displacement field
on the boundaries of the elements.

Next, we employ the standard finite-element procedure to reduce the solution of the problem to the solution
of a system of linear algebraic equations [22]. The basic variational equation (1.5) written for one term becomes

{a0[(1 − ν)aijmn + (1 − 2ν)bijmn/2]Umn
1 + a0[νcijmn + (1 − 2ν)cmnij/2]Umn

2

+ (dij11 + eij12)KI}δU ij
1 + {a0[νcmnij + (1 − 2ν)cijmn/2]Umn

1

+ a0[(1 − ν)bijmn + (1 − 2ν)aijmn/2]Umn
2 + (eij22 + dij12)KI}δU ij

2

+ {a0[(1 − ν)fmn11 + νfmn22 + (1 − 2ν)gmn12]Umn
1 + a0[(1 − ν)gmn22 + νgmn11

+ (1 − 2ν)fmn12]Umn
2 + hKI}δKI = χij δU

ij
1 + ψij δU

ij
2 + ω δKI, (2.2)

where the coefficients are defined by the formulas

a0 =
E

(1 − 2ν)(1 + ν)
, aijmn =

∫

S

ΦijΦmn dS, bijmn =
∫

S

FijFmn dS,

cijmn =
∫

S

ΦijFmn dS, dijmn =
∫

S

Φijσ
∗
mn dS, eijmn =

∫

S

Fijσ
∗
mn dS,

fijmn =
∫

S

Φijε
∗
mn dS, gijmn =

∫

S

Fijε
∗
mn dS, h =

∫

S

σ∗
mnε

∗
mn dS,

χij =
∫

l

p1Li(ξ)Lj(η) dl −
∫

S

[(3KαΔT + s11)Φij + s12Fij ] dS,
(2.3)

ψij =
∫

l

p2Li(ξ)Lj(η) dl −
∫

S

[s12Φij + (3KαΔT + s22)Fij ] dS,

ω =
∫

l

pmu
∗
m dl −

∫

S

(3KαΔT δmn + smn)ε∗mn dS.

The contour integrals in formulas (2.3) are different from zero only for elements whose sides are subjected to external
loading. The functions in the integrands for coefficients (2.3) are found from the expressions

Φij(ξ, η) = [(−1)iLj(η) ∂1ξ + (−1)jLi(ξ)∂1η]/2,

Fij(ξ, η) = [(−1)iLj(η) ∂2ξ + (−1)jLi(ξ) ∂2η]/2,

∂m =
∂

∂xm
,

(
∂1ξ ∂2ξ

∂1η ∂2η

)
=

(
∂ξx1 ∂ηx1

∂ξx2 ∂ηx2

)−1

,

∂ξxm = (−1)iLj(η)X ij
m/2, ∂ηxm = (−1)jLi(ξ)X ij

m/2.

Summation of expressions (2.2) over all finite elements with Conversion from the two-dimensional to one-
dimensional numbering of unknowns and taking into account that one node is contained in several elements leads
to the system of N + 1 linear algebraic equations

TZ = P, (2.4)

where the first N elements of the column matrix Z are the required nodal displacements and zN+1 = KI. Displace-
ments of the nodes lying on the boundary contour segments BC and DE (see Fig. 2) should satisfy the kinematic
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boundary conditions. Because the displacements u∗2 are equal to zero on the segment BC, the conditions are taken
into account using the standard method [22]: the corresponding elements of the vector of the right sides P and the
corresponding rows and columns of the matrix T , except for diagonal terms are set equal to zero. On the segment
DE, the displacements u∗2 are different from zero. In this case, the kinematic boundary conditions are satisfied as
follows. Let j be the number of a nodal displacement such that its sum with the displacement KIu

∗
2 which, at the

point considered, is equal, for example, to bKI, should be zero. In this case, because δzj = −b δKI, the jth row of
the matrix T multiplied by −b needs to be added to the (N + 1)th row, and then the jth column multiplied by −b
needs to be added to the (N + 1)th column. Next, according to the standard approach [22], in the jth row and
the jth column, all elements are set equal to zero, except for the diagonal element, which is set equal to unity, and
except for the element tj,N+1, which is set equal to b.

The matrix T (converted according to the boundary conditions) is not a band matrix; therefore, to solve
system (2.4), it is reasonable to split it into the system of the first N equations, whose coefficient matrix is a band
matrix, and the (N + 1)th equation. Let the vector of the unknowns Y include the first N components of the
vector Z, the vector of the right sides B include the first N components of the vector P , and the matrix A include
the first N rows and N columns of the matrix T . System (2.4) is equivalent to the system

AY = B − CKI,

N∑
i=1

tN+1,iyi + tN+1,N+1KI = pN+1,

(2.5)

where the vector C consists of the first N elements of the (N + 1)th column of the matrix T . The matrix A is
apparently a band one. Solving the first (matrix) equation of system (2.5) first with the right side B, and then with
the right side −C, we obtain a solution of the form

Y = Y1 +KIY2.

Next, from the second equation of system (2.5), it is easy to determine the value of KI.
Cohesive forces are applied to the boundary segment AB in a direction opposite to the ordinate direction.

The modulus of these forces varies along the abscissa as [19]

q(x1) =

{
q∗(1 − 3ζ2 + 2ζ3), ζ ∈ [0, 1],

0, ζ > 1,

where ζ = (R1 + a − x1)/δ (δ � a is the length of the cohesive zone). For the specified value of δ, the cohesive
forces are defined by their maximum value q∗, which is found from the condition of no singularity of the stress field
at the crack tip. Because of the linearity of the elastic problem, the stress intensity factor can be represented as
the sum

KI = KI1 + q∗KI2

(KI1 is the intensity factor for stresses that arise under the action of pressure, temperature gradient, and initial
stresses and KI2 is the intensity factor for stresses that arise under the action of cohesive forces at q∗ = 1). Setting
KI = 0, we find the value of q∗ and, as a consequence, the total stress field that has no singularity.

The energy characteristic of fracture (the J-integral) is expressed in terms of the cohesive forces by the Rice
formula [11]

J = −2

R1+a∫

R1+a−δ

q
∂u2

∂x1
dx1.

This formula is also valid in the cases where the value of J ignoring cohesive forces cannot be found as a path
independent contour integral, for example, under the action of a nonuniform temperature field [21].

3. Calculation Results. The method proposed here was used to solve a number of thermoelastoplastic
problems for a cracked cylinder. In all calculation examples given below, the finite-element mesh was refined as
long as the first three significant figures of the result (the values of the J-integral) changed. In the final version, the
number of equations in the system was 60,702. We first solved the problem of elastoplastic deformation of a cylinder
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Fig. 4. J-integral versus pressure in the case of an unheated cylinder: curves 1–3 refer to the calculation
taking into account elastoplastic deformation for δ/a = 0.05 (1) and 0.1 (2); curve 3 is the calculation
result of [8]; curve 4 refers to the calculation taking into account only elastic deformation [3].

Fig. 5. J-integral versus temperature on the outer surface of the cylinder: the curve is the result of
calculation using the method developed; the points are the calculation results of [9].

subjected to internal pressure, whose results can be compared with the data of [8]. The calculations were performed
for the following initial data: Young’s modulus E = 2.15 · 105 N/mm2, Poisson’s constant ν = 0.3, yield point
σY = 275 N/mm2, wall-thickness parameter β = R2/R1 = 2, and relative crack length a∗ = a/(R2 − R1) = 0.5.
Figure 4 shows the calculated curve of the J-integral versus pressure in the cylinder channel in dimensionless
variables:

p∗ =
p

pf
, pf =

2σY√
3

lnβ, J∗ =
EJ

aσ2
Y

(3.1)

(pf is the limiting internal pressure for the cylinder without a crack [23]).
Curves 1–3 are calculated taking into account elastoplastic deformation before the attainment of the ultimate

pressure (the pressure at which the cylinder lost the load-carrying ability). In Fig. 4, it is evident that the length of
the cohesive zone has a weak effect on the calculation results: as it changes by a factor of two, the limiting pressure
changes by only 4.2%. The results of calculations using the method developed agree with the results obtained
in [8]. In the problem considered, accounting for the possibility of plastic deformation leads to relations that differ
significantly from the results taking into account only elastic deformation (curve 4).

Figure 5 shows the results of solution of the thermoelastoplastic problem for a cylinder heated from the outer
surface at p = 0 and the following initial data: E = 2 · 105 N/mm2, ν = 0.3, σY = 200 N/mm2, β = 1.2, a∗ = 0.5,
α = 10−5 1/◦C. The steady-state temperature field in the cylinder is defined by the formula

T = T2 + (T1 − T2) ln (r/R2)/ ln (R1/R2), (3.2)

where T1 and T2 are the temperatures of the inner and outer surfaces of the cylinder, respectively, and r is the radial
coordinate. The calculations were performed for T0 = T1 = 0◦C and δ/a = 0.05. A comparison of the calculation
results with the data of [9] obtained by another method show that they are in good agreement (Fig. 5).

The case of the joint action of pressure and a temperature field is more difficult to calculate and more
important for engineering practice. In the case of considerable heating, it is necessary to take into account the
temperature dependence of the yield point, which is represented as σY = σY 0ψ(T ), where ψ(T ) is a dimensionless
function and σY 0 is the yield point at ψ = 1. The values of the function ψ(T ) for high-strength steels are listed
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TABLE 1

T , ◦C ψ(T ) T , ◦C ψ(T )

0 1,00 500 0.57
100 1.00 600 0.35
200 1.00 700 0.19
300 0.97 800 0.09
400 0.83
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12

8

16

0

2

3

Fig. 6. J-integral versus pressure in the cylinder channel under different
loading conditions: 1) unheated cylinder; 2) the joint action of heating
and pressure; 3) heating of the cylinder with subsequent cooling and
pressure loading.

in Table 1. The calculations were performed for the following initial data: E = 2.15 · 105 N/mm2, ν = 0.3,
σY 0 = 275 N/mm2, β = 2, a∗ = 0.5, δ/a = 0.05, α = 10−5 1/◦C, and T0 = 20◦C. The calculation results are
given in Fig. 6 [the quantities p∗ and J∗ are defined by formulas (3.1), in which by the quantity σY is meant the
quantity σY 0]. The difference between the curves is due to differences in loading conditions. Curve 1 in Fig. 6
(curve 1 in Fig. 4) characterizes the resistance of the unheated cylinder. Curve 2 is obtained for the steady-state
temperature distribution (3.2), and the temperature of the inner and outer surfaces increase in proportion to the
pressure as follows:

T1 = T0 + 1460p∗, T2 = T0 + 1060p∗.

Curve 3 corresponds to the following loading conditions: the cylinder is first heated at p = 0 to temperatures
T1 = 750◦C and T2 = 550◦C [the temperature distribution over the cross section of the cylinder is given by
formula (3.2)], and the cylinder is then cooled to temperature T0, after which its inner surface is subjected to
pressure loading. The action of the residual stress field formed after heating with subsequent cooling is similar to
the action of the stress field due to the action of pressure, as a result of which curve 3 is above curve 1.

If the strength of the cylinder is estimated from its load-carrying ability, the determining loading regime is
the one described by curve 2 in Fig. 6, but if fatigue failure is possible or the critical value of the J-integral is small
enough, the loading regime described by curve 3 is the determining one. Thus, the loading regime can influence the
estimation of the strength of the cylinder.

This work was supported by the Russian Foundation for Basic Research (Grant Nos. 04-01-00247 and
07-01-96402).
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